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Artificial Neural Networks for RF and Microwave
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Vijay K. Devabhaktuni, Student Member, IEEE

Abstract—Neural-network computational modules have re-
cently gained recognition as an unconventional and useful tool for
RF and microwave modeling and design. Neural networks can be
trained to learn the behavior of passive/active components/circuits.
A trained neural network can be used for high-level design, pro-
viding fast and accurate answers to the task it has learned. Neural
networks are attractive alternatives to conventional methods such
as numerical modeling methods, which could be computationally
expensive, or analytical methods which could be difficult to obtain
for new devices, or empirical modeling solutions whose range and
accuracy may be limited. This tutorial describes fundamental
concepts in this emerging area aimed at teaching RF/microwave
engineers what neural networks are, why they are useful, when
they can be used, and how to use them. Neural-network structures
and their training methods are described from the RF/microwave
designer’s perspective. Electromagnetics-based training for
passive component models and physics-based training for active
device models are illustrated. Circuit design and yield optimiza-
tion using passive/active neural models are also presented. A
multimedia slide presentation along with narrative audio clips is
included in the electronic version of this paper. A hyperlink to
the NeuroModeler demonstration software is provided to allow
readers practice neural-network-based design concepts.

Index Terms—Computer-aided design (CAD), design
automation, modeling, neural networks, optimization, simulation.

I. INTRODUCTION

NEURAL networks, also called artificial neural networks
(ANNs), are information processing systems with their

design inspired by the studies of the ability of the human brain
to learn from observations and to generalize by abstraction [1].
The fact that neural networks can be trained to learn any arbi-
trary nonlinear input–output relationships from corresponding
data has resulted in their use in a number of areas such as
pattern recognition, speech processing, control, biomedical
engineering etc. Recently, ANNs have been applied to RF and
microwave computer-aided design (CAD) problems as well.
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Neural networks are first trained to model the electrical be-
havior of passive and active components/circuits. These trained
neural networks, often referred to as neural-network models
(or simply neural models), can then be used in high-level
simulation and design, providing fast answers to the task they
have learned [2], [3]. Neural networks are efficient alternatives
to conventional methods such as numerical modeling methods,
which could be computationally expensive, or analytical
methods, which could be difficult to obtain for new devices,
or empirical models, whose range and accuracy could be
limited. Neural-network techniques have been used for a wide
variety of microwave applications such as embedded passives
[4], transmission-line components [5]–[7], vias [8], bends [9],
coplanar waveguide (CPW) components [10], spiral inductors
[11], FETs [12], amplifiers [13], [14], etc. Neural networks
have also been used in impedance matching [15], inverse
modeling [16], measurements [17], and synthesis [18].

An increased number of RF/microwave engineers and
researchers have started taking serious interest in this emerging
technology. As such, this tutorial is prepared to meet the edu-
cational needs of the RF/microwave community. The subject
of neural networks will be described from the point-of-view of
RF/microwave engineers using microwave-oriented language
and terminology. In Section II, neural-network structural issues
are introduced, and the popularly used multilayer percep-
tron (MLP) neural network is described at length. Various
steps involved in the development of neural-network models
are described in Section III. Practical microwave examples
illustrating the application of neural-network techniques to
component modeling and circuit optimization are presented in
Sections IV and V, respectively. Finally, Section VI contains
a summary and conclusions. To further aid the readers in
quickly grasping the ANN fundamentals and practical aspects,
an electronic multimedia slide presentation of the tutorial and
a hyperlink to NeuroModeler demonstration software1 are
included in the CD-ROM accompanying this issue.

II. NEURAL-NETWORK STRUCTURES

We describe neural-network structural issues to better
understand what neural networks are and why they have the
ability to represent RF and microwave component behaviors.
We study neural networks from the external input–output
point-of-view, and also from the internal neuron information

1NeuroModeler, Q.-J. Zhang, Dept. Electron., Carleton Univ., Ottawa, ON,
Canada.
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Fig. 1. Physics-based FET to be modeled using a neural network.

processing point-of-view. The most popularly used neural-net-
work structure, i.e., the MLP, is described in detail. The effects
of structural issues on modeling accuracy are discussed.

A. Basic Components

A typical neural-network structure has two types of basic
components, namely, the processing elements and the intercon-
nections between them. The processing elements are called neu-
rons and the connections between the neurons are known as
links or synapses. Every link has a corresponding weight param-
eter associated with it. Each neuron receives stimulus from other
neurons connected to it, processes the information, and pro-
duces an output. Neurons that receive stimuli from outside the
network are called input neurons, while neurons whose outputs
are externally used are called output neurons. Neurons that re-
ceive stimuli from other neurons and whose outputs are stimuli
for other neurons in the network are known as hidden neurons.
Different neural-network structures can be constructed by using
different types of neurons and by connecting them differently.

B. Concept of a Neural-Network Model

Let and represent the number of input and output neurons
of a neural network. Let be an -vector containing the external
inputs to the neural network, be an -vector containing the
outputs from the output neurons, and be a vector containing
all the weight parameters representing various interconnections
in the neural network. The definition of , and the manner in
which is computed from and , determine the structure of
the neural network.

Consider an FET as shown in Fig. 1. The physical/geomet-
rical/bias parameters of the FET are variables and any change
in the values of these parameters affects the electrical responses
of the FET (e.g., small-signal -parameters). Assume that
there is a need to develop a neural model that can represent
such input–output relationship. Inputs and outputs of the
corresponding FET neural model are given by

(1)

(2)

where is frequency, and and represent magni-
tude and phase of the -parameter . The superscript in-
dicates transpose of a vector or matrix. Other parameters in (1)

are defined in Fig. 1. The original physics-based FET modeling
problem can be expressed as

(3)

where is a detailed physics-based input–output relationship.
The neural-network model for the FET is given by

(4)

The neural network in (4) can represent the FET behavior in
(3) only after learning the original – relationship through a
process called training. Several ( , ) samples called training
data need to be generated either from the FET’s physics
simulator or from measurements. The objective of training is
to adjust neural-network weights such that the neural model
outputs best match the training data outputs. A trained neural
model can be used during the microwave design process to
provide instant answers to the task it has learned. In the FET
case, the neural model can be used to provide fast estimation
of -parameters against the FET’s physical/geometrical/bias
parameter values.

C. Neural Network Versus Conventional Modeling

The neural-network approach can be compared with conven-
tional approaches for a better understanding. The first approach
is the detailed modeling approach (e.g., electromagnetic
(EM)-based models for passive components and physics-based
models for active devices), where the model is defined by a
well-established theory. The detailed models are accurate, but
could be computationally expensive. The second approach is an
approximate modeling approach, which uses either empirical
or equivalent-circuit-based models for passive and active
components. These models are developed using a mixture
of simplified component theory, heuristic interpretation and
representation, and/or fitting of experimental data. Evaluation
of approximate models is much faster than that of the detailed
models. However, the models are limited in terms of accuracy
and input parameter range over which they can be accurate.
The neural-network approach is a new type of modeling
approach where the model can be developed by learning from
detailed (accurate) data of the RF/microwave component. After
training, the neural network becomes a fast and accurate model
representing the original component behaviors.

D. MLP Neural Network

1) Structure and Notation: MLP is a popularly used neural-
network structure. In the MLP neural network, the neurons are
grouped into layers. The first and the last layers are called input
and output layers, respectively, and the remaining layers are
called hidden layers. Typically, an MLP neural network consists
of an input layer, one or more hidden layers, and an output layer,
as shown in Fig. 2. For example, an MLP neural network with
an input layer, one hidden layer, and an output layer, is referred
to as three-layer MLP (or MLP3).

Suppose the total number of layers is . The first layer is the
input layer, the th layer is the output layer, and layers 2 to
are hidden layers. Let the number of neurons in the th layer be

, . Let represent the weight of the link
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Fig. 2. MLP neural-network structure. Typically, an MLP network consists of
an input layer, one or more hidden layers, and an output layer.

between the th neuron of the th layer and the th neuron of
the th layer. Let represent the th external input to the MLP
and be the output of the th neuron of the th layer. There is an
additional weight parameter for each neuron ( ) representing
the bias for the th neuron of the th layer. As such, of the
MLP includes , , , and

, i.e., .
The parameters in the weight vector are real numbers, which
are initialized before MLP training. During training, they are
changed (updated) iteratively in a systematic manner [19]. Once
the neural-network training is completed, the vector remains
fixed throughout the usage of the neural network as a model.

2) Anatomy of Neurons: In the MLP network, each neuron
processes the stimuli (inputs) received from other neurons. The
process is done through a function called the activation func-
tion in the neuron, and the processed information becomes the
output of the neuron. For example, every neuron in the th layer
receives stimuli from the neurons of the ( )th layer, i.e., ,

, , . A typical th neuron in the th layer processes
this information in two steps. Firstly, each of the inputs is mul-
tiplied by the corresponding weight parameter and the products
are added to produce a weighted sum , i.e.,

(5)

In order to create the effect of bias parameter , we assume a
fictitious neuron in the ( )th layer whose output is

. Secondly, the weighted sum in (5) is used to activate the
neuron’s activation function to produce the final output of
the neuron . This output can, in turn, become the

stimulus to neurons in the ( )th layer. The most commonly
used hidden neuron activation function is the sigmoid function
given by

(6)

Other functions that can also be used are the arc-tangent
function, hyperbolic-tangent function, etc. All these are smooth
switch functions that are bounded, continuous, monotonic, and
continuously differentiable. Input neurons use a relay activation
function and simply relay the external stimuli to the hidden
layer neurons, i.e., , . In the case of
neural networks for RF/microwave design, where the purpose
is to model continuous electrical parameters, a linear activation
function can be used for output neurons. An output neuron
computation is given by

(7)

3) Feedforward Computation: Given the input vector
and the weight vector , neural network

feedforward computation is a process used to compute the
output vector . Feedforward computation
is useful not only during neural-network training, but also
during the usage of the trained neural model. The external
inputs are first fed to the input neurons (i.e., first layer) and the
outputs from the input neurons are fed to the hidden neurons
of the second layer. Continuing this way, the outputs of the

th layer neurons are fed to the output layer neurons (i.e.,
the th layer). During feedforward computation, neural-net-
work weights remain fixed. The computation is given by

(8)

(9)

(10)

4) Important Features: It may be noted that the simple
formulas in (8)–(10) are now intended for use as RF/microwave
component models. It is evident that these formulas are much
easier to compute than numerically solving theoretical EM
or physics equations. This is the reason why neural-network
models are much faster than detailed numerical models of
RF/microwave components. For the FET modeling example
described earlier, (8)–(10) will represent the model of -pa-
rameters as functions of transistor gate length, gate width,
doping density, and gate and drain voltages. The question of
why such simple formulas in the neural network can represent
complicated FET (or, in general, EM, physics, RF/microwave)
behavior can be answered by the universal approximation
theorem.

The universal approximation theorem [20] states that there
always exists a three-layer MLP neural network that can ap-
proximate any arbitrary nonlinear continuous multidimensional
function to any desired accuracy. This forms a theoretical basis
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for employing neural networks to approximate RF/microwave
behaviors, which can be functions of physical/geometrical/bias
parameters. MLP neural networks are distributed models, i.e.,
no single neuron can produce the overall – relationship.
For a given , some neurons are switched on, some are off,
and others are in transition. It is this combination of neuron
switching states that enables the MLP to represent a given
nonlinear input–output mapping. During training process,
the MLP’s weight parameters are adjusted and, at the end of
training, they encode the component information from the
corresponding – training data.

E. Network Size and Layers

For the neural network to be an accurate model of the problem
to be learned, a suitable number of hidden neurons are needed.
The number of hidden neurons depends upon the degree of non-
linearity of and the dimensionality of and (i.e., values of
and ). Highly nonlinear components need more neurons and
smoother items need fewer neurons. However, the universal ap-
proximation theorem does not specify as to what should be the
size of the MLP network. The precise number of hidden neurons
required for a given modeling task remains an open question.
Users can use either experience or a trial-and-error process to
judge the number of hidden neurons. The appropriate number
of neurons can also be determined through adaptive processes,
which add/delete neurons during training [4], [21]. The number
of layers in the MLP can reflect the degree of hierarchical infor-
mation in the original modeling problem. In general, the MLPs
with one or two hidden layers [22] (i.e., three- or four-layer
MLPs) are commonly used for RF/microwave applications.

F. Other Neural-Network Configurations

In addition to the MLP, there are other ANN structures [19],
e.g., radial basis function (RBF) networks, wavelet networks,
recurrent networks, etc. In order to select a neural-network
structure for a given application, one starts by identifying the
nature of the – relationship. Nondynamic modeling problems
(or problems converted from dynamic to nondynamic using
methods like harmonic balance) can be solved using MLP, RBF,
and wavelet networks. The most popular choice is the MLP
since its structure and training are well-established. RBF and
wavelet networks can be used when the problem exhibits highly
nonlinear and localized phenomena (e.g., sharp variations).
Time-domain dynamic responses such as those in nonlinear
modeling can be represented using recurrent neural networks
[13] and dynamic neural networks [14]. One of the most recent
research directions in the area of microwave-oriented ANN
structures is the knowledge-based networks [6]–[9], which
combine existing engineering knowledge (e.g., empirical
equations and equivalent-circuit models) with neural networks.

III. NEURAL-NETWORK MODEL DEVELOPMENT

The neural network does not represent any RF/microwave
component unless we train it with RF/microwave data. To
develop a neural-network model, we need to identify input
and output parameters of the component in order to generate
and preprocess data, and then use this data to carry out ANN

training. We also need to establish quality measures of neural
models. In this section, we describe the important steps and
issues in neural model development.

A. Problem Formulation and Data Processing

1) ANN Inputs and Outputs: The first step toward devel-
oping a neural model is the identification of inputs and
outputs . The output parameters are determined based on the
purpose of the neural-network model. For example, real and
imaginary parts of -parameters can be selected for passive
component models, currents and charges can be used for
large-signal device models, and cross-sectional resistance–in-
ductance–conductance–capacitance (RLGC) parameters can
be chosen for very large scale integration (VLSI) interconnect
models. Other factors influencing the choice of outputs are:
1) ease of data generation; 2) ease of incorporation of the neural
model into circuit simulators, etc. Neural model input param-
eters are those device/circuit parameters (e.g., geometrical,
physical, bias, frequency, etc.) that affect the output parameter
values.

2) Data Range and Sample Distribution: The next step is to
define the range of data to be used in ANN model development
and the distribution of – samples within that range. Suppose
the range of input space (i.e., -space) in which the neural model
would be used after training (during design) is , .
Training data is sampled slightly beyond the model utilization
range, i.e., , , in order to ensure reliability
of the neural model at the boundaries of model utilization range.
Test data is generated in the range , .

Once the range of input parameters is finalized, a sampling
distribution needs to be chosen. Commonly used sample dis-
tributions include uniform grid distribution, nonuniform grid
distribution, design of experiments (DOE) methodology [8], star
distribution [9], and random distribution. In uniform grid dis-
tribution, each input parameter is sampled at equal intervals.
Suppose the number of grids along input dimension is . The
total number of – samples is given by . For ex-
ample, in an FET modeling problem where
and neural model utilization range is

(11)

training data can be generated in the range

(12)

In nonuniform grid distribution, each input parameter is sam-
pled at unequal intervals. This is useful when the problem be-
havior is highly nonlinear in certain subregions of the -space
and dense sampling is needed in such subregions. Modeling
dc characteristics ( – curves) of an FET is a classic example
for nonuniform grid distribution. Sample distributions based on
DOE (e.g., factorial experimental design, central composite
experimental design) and star distribution are used in situations
where training data generation is expensive.



ZHANG et al.: ANNs FOR RF AND MICROWAVE DESIGN 1343

3) Data Generation: In this step, – sample pairs are gen-
erated using either simulation software (e.g., three-dimensional
(3-D) EM simulations using Ansoft HFSS2 ) or measurement
setup (e.g., -parameter measurements from a network ana-
lyzer). The generated data could be used for training the neural
network and testing the resulting neural-network model. In
practice, both simulations and measurements could have small
errors. While errors in simulation could be due to trunca-
tion/roundoff or nonconvergence, errors in measurement could
be due to equipment limitations or tolerances. Considering this,
we introduce a vector to represent the outputs from simula-
tion/measurement corresponding to an input . Data generation
is then defined as the use of simulation/measurement to obtain
sample pairs ( , ), . The total number
of samples is chosen such that the developed neural model
best represents the given problem . A general guideline is
to generate larger number of samples for a nonlinear high-di-
mensional problem and fewer samples for a relatively smooth
low-dimensional problem.

4) Data Organization: The generated ( , ) sample pairs
could be divided into three sets, namely, training data, valida-
tion data, and test data. Let , , , and represent index
sets of training data, validation data, test data, and generated
(available) data, respectively. Training data is utilized to guide
the training process, i.e., to update the neural-network weight
parameters during training. Validation data is used to monitor
the quality of the neural-network model during training and to
determine stop criteria for the training process. Test data is used
to independently examine the final quality of the trained neural
model in terms of accuracy and generalization capability.

Ideally, each of the data sets , , and should adequately
represent the original component behavior . In prac-
tice, available data can be split depending upon its quantity.
When is sufficiently large, it can be split into three mutually
disjoint sets. When is limited due to expensive simulation or
measurement, it can be split into just two sets. One of the sets
is used for training and validation and the other for
testing or, alternatively, one of the sets is used for training

and the other for validation and testing .
5) Data Preprocessing: Contrary to binary data (0’s and

1’s) in pattern recognition applications, the orders of magni-
tude of various input ( ) and output ( ) parameter values in
microwave applications can be very different from one another.
As such, a systematic preprocessing of training data called
scaling is desirable for efficient neural-network training. Let ,

, and represent a generic input element in the vectors
, , and of original (generated) data, respectively. Let
, , and represent a generic element in the vectors ,

, and of scaled data, where , is the input
parameter range after scaling. Linear scaling is given by

(13)

and corresponding de-scaling is given by

(14)

2HFSS, ver. 8.0, Ansoft Corporation, Pittsburgh, PA.

Output parameters in training data, i.e., elements in , can
also be scaled in a similar manner. Linear scaling of data can
provide balance between different inputs (or outputs) whose
values are different by orders of magnitude. Another scaling
method is the logarithmic scaling [1], which can be applied to
outputs with large variations in order to provide a balance be-
tween small and large values of the same output. In the training
of knowledge-based networks, where knowledge neuron func-
tions (e.g., Ohm’s law, Faraday’s law, etc.) require preservation
of physical meaning of the input parameters, training data is not
scaled, i.e., . At the end of this step, the scaled data is
ready to be used for training.

B. Neural-Network Training

1) Weight Parameters Initialization: In this step, we prepare
the neural network for training. The neural-network weight pa-
rameters ( ) are initialized so as to provide a good starting
point for training (optimization). The widely used strategy for
MLP weight initialization is to initialize the weights with small
random values (e.g., in the range [ 0.5, 0.5]). Another method
suggests that the range of random weights be inversely propor-
tional to the square root of number of stimuli a neuron receives
on average. To improve the convergence of training, one can
use a variety of distributions (e.g., Gaussian distribution) and/or
different ranges and different variances for the random number
generators used in initializing the ANN weights [23].

2) Formulation of Training Process: The most important
step in neural model development is the neural-network
training. The training data consists of sample pairs ,
and , where and are - and -vectors repre-
senting the inputs and desired outputs of the neural network.
We define neural-network training error as

(15)

where is the th element of and is the th
neural-network output for input .

The purpose of neural-network training, in basic terms, is
to adjust such that the error function is minimized.
Since is a nonlinear function of the adjustable (i.e.,
trainable) weight parameters , iterative algorithms are often
used to explore the -space efficiently. One begins with an
initialized value of and then iteratively updates it. Gradient-
based iterative training techniques update based on error
information and error derivative information .
The subsequent point in -space denoted as is determined
by a step down from the current point along a direction
vector , i.e., . Here, is called
the weight update and is a positive step size known as the
learning rate. For example, the backpropagation (BP) training
algorithm [19] updates along the negative direction of the
gradient of training error as .

3) Error Derivative Computation: As mentioned earlier,
gradient-based training techniques require error derivative
computation, i.e., . For the MLP neural network,
these derivatives are computed using a standard approach often
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Fig. 3. Flowchart demonstrating neural-network training, neural model testing, and use of training, validation, and test data sets in ANN modeling approach.

referred to as error backpropagation (EBP), which is described
here. We define a per-sample error function given by

(16)

for the th data sample . Let represent the error
between the th neural-network output and the th output in
training data, i.e.,

(17)

Starting from the output layer, this error can be backpropa-
gated to the hidden layers as

(18)

where represents the local error at the th neuron in the th
layer. The derivative of the per-sample error in (16) with respect
to a given neural-network weight parameter is given by

(19)

Finally, the derivative of the training error in (15) with respect
to can be computed as

Using EBP, can be systematically evaluated for the
MLP neural-network structure and can be provided to gradient-
based training algorithms for the determination of weight update

.
4) More About Training: Validation error and test error

can be defined in a manner similar to (15) using the valida-
tion and test data sets and . During ANN training, valida-
tion error is periodically evaluated and the training is terminated
once a reasonable is reached. At the end of the training, the

quality of the neural-network model can be independently as-
sessed by evaluating the test error . Neural-network training
algorithms commonly used in RF/microwave applications in-
clude gradient-based training techniques such as BP, conjugate-
gradient, quasi-Newton, etc. Global optimization methods such
as simulated annealing and genetic algorithms can be used for
globally optimal solutions of neural-network weights. However,
the training time required for global optimization methods is
much longer than that for gradient-based training techniques.

The neural-network training process can be categorized
into sample-by-sample training and batch-mode training. In
sample-by-sample training, also called online training, is
updated each time a training sample is presented to the
network. In batch-mode training, also known as offline training,

is updated after each epoch, where an epoch is defined as a
stage of the training process that involves presentation of all
the training data (or samples) to the neural network once. In
the RF/microwave case, batch-mode training is usually more
effective.

A flowchart summarizing major steps in neural-network
training and testing is shown in Fig. 3.

5) Over-Learning and Under-Learning: The ability of a
neural network to estimate output accurately when presented
with input never seen during training (i.e., ) is called
generalization ability. The normalized training error is defined
as

(20)

where and are the minimum and maximum
values of the th element of all , , and is the
number of data samples in . The normalized validation
error can be similarly defined. Good learning of a neural
network is achieved when both and have small values
(e.g., 0.50%) and are close to each other. The ANN exhibits
over-learning when it memorizes the training data, but cannot
generalize well (i.e., is small, but ). Remedies
for over-learning are: 1) deleting a certain number of hidden
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neurons or 2) adding more samples to the training data. The
neural network exhibits under-learning, when it has difficulties
in learning the training data itself (i.e., ). Possible
remedies are: 1) adding more hidden neurons or 2) perturbing
the current solution to escape from a local minimum of

, and then continuing training.
6) Quality Measures: The quality of a trained neural-net-

work model is evaluated with an independent set of data, i.e.,
. We define a relative error for the th output of the neural

model for the th test sample as

(21)

A quality measure based on the th norm is then defined as

(22)

The average test error can be calculated using as

Average Test Error (23)

where represents number of samples in test set . The
worst case error among all test samples and all neural-network
model outputs can be calculated using

(24)

Other statistical measures such as correlation coefficient and
standard deviation can also be used.

IV. COMPONENT MODELING USING NEURAL NETWORKS

Component/device modeling is one of the most important
areas of RF/microwave CAD. The efficiency of CAD tools de-
pends largely on speed and accuracy of the component models.
Development of neural-network models for active devices, pas-
sive components, and high-speed interconnects has already been
demonstrated [6], [8], [24]. These neural models could be used
in device level analysis and also in circuit/system-level design
[10], [12]. In this section, neural-network modeling examples
are presented in each of the above-mentioned categories.

A. High-Speed Interconnect Network

In this example, a neural network was trained to model signal
propagation delays of a VLSI interconnect network in printed
circuit boards (PCBs). The electrical equivalent circuit showing
the interconnection of a source integrated circuit (IC) pin to
the receiver pins is shown in Fig. 4. During PCB design, each
individual interconnect network needs to be varied in terms
of its interconnect lengths, receiver-pin load characteristics,
source characteristics, and network topology. To facilitate this,
a neural-network model of the interconnect configuration was
developed [24].

The input variables in the model are
, and .

Here, is length of the th interconnect, and are
terminations of the th interconnect, is the source
impedance, and and are peak value and rise time of the
source voltage. The parameter identifies the interconnect

Fig. 4. Circuit representation of the VLSI interconnect network showing the
connection of a source IC pin to four receiver pins. A neural model is to be
developed to represent the signal delays at the four receiver pins as functions of
the interconnect network parameters.

Fig. 5. Possible network configurations for four interconnect lines in a
tree interconnect network. The values of the neural-network input variables
fe e e g are shown in curly brackets. Each combination of these input
variables defines a particular interconnect topology [1], [24].

network topology [1], [24], as defined in Fig. 5. The outputs
of the neural model are the propagation delays at the four
terminations, i.e., , where propagation delay
is defined as the time taken for the signal to reach 80% of
its steady-state value. The corresponding three-layer MLP
neural-network structure, shown in Fig. 6, has a total of 18
input neurons and four output neurons.

Due to large dimensionality of the input parameters (i.e.,
), a relatively large number of training and test data

(4500 4500) and 40 hidden layer neurons were used. Data
was generated using an in-house interconnect simulator NILT
[25]. Neural-network training was carried out using a classical
BP algorithm for MLPs. The average test error of the resulting
neural network model was observed to be 0.04%. This fast and
accurate neural-network model was used in PCB interconnect
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Fig. 6. Three-layer MLP structure with 18 inputs and four outputs used for
modeling the interconnect network of Fig. 4.

simulation, where 20 000 interconnect trees (with different
interconnect lengths, terminations, and topologies) had to be
repetitively analyzed. Neural-model-based simulation was
observed to be 310 times faster than existing NILT interconnect
network simulator. This enhanced model efficiency becomes
important for the design of large VLSI circuits.

B. CPW Symmetric T-Junction

At microwave and millimeter-wave frequencies, CPW cir-
cuits offer several advantages, such as the ease of shunt and
series connections, low radiation, low dispersion, and avoid-
ance of the need for thin fragile substrates. Currently, CAD
tools available for CPW circuits are inadequate because of the
nonavailability of fast and accurate models for CPW disconti-
nuities such as T-junctions, bends, etc. Much effort has been
expended in developing efficient methods for EM simulation
of CPW discontinuities. However, the time-consuming nature
of EM simulations limits the use of these tools for interactive
CAD, where the geometry of the component needs to be repet-
itively changed, thereby necessitating massive EM simulations.
Neural-network-based modeling and CAD approach addresses
this challenge.

In this example, the neural-network model of a symmetric
T-junction [10] is described. The T-junction configuration is
similar to that of the 2T junction shown in Fig. 7. Variable
neural model input parameters are the physical dimensions

, , , and , and the frequency of operation,
i.e., . Parameters and

are strip width and gap dimension of the side CPW,
where and specify the two colinear CPW lines.
Air bridges shown in T-junctions of Fig. 7 are also included
for the model development. The outputs of the ANN model
are the magnitudes and phases of the -parameters, i.e.,

.

Fig. 7. Geometry of the CPW folded double-stub filter circuit. Optimization
of the filter is carried out using fast EM-ANN models of various components in
the circuit.

TABLE I
ERROR COMPARISON BETWEEN THE ANN MODEL AND EM SIMULATIONS FOR

THE CPW SYMMETRIC T-JUNCTION. INPUT BRANCHLINE PORT IS PORT 1 AND

THE OUTPUT PORTS ON THE MAIN LINE ARE PORTS 2 AND 3

Data generation was performed for 25 physical configurations
(sizes) of the component over a frequency range of 1–50 GHz.
The generated data was split into 155 training and 131 test
samples. A three-layer MLP neural-network structure with 15
hidden layer neurons was trained using the BP algorithm. The
accuracy of the developed neural models is shown in Table I in
terms of average error and standard deviation.

C. Transistor Modeling

Physics-based device models are CPU intensive, especially
when used for high-level design involving repetitive simula-
tions. A neural-network model will be very efficient for this kind
of devices in speeding up simulation and optimization. Two il-
lustrative examples are presented for neural-network transistor
models.

In the first example, a neural-network model representing
large-signal behavior of a MESFET was developed [12]. The
neural-network model has six inputs, i.e., gate length ,
gatewidth , channel thickness , doping density ,
gate–source voltage , and drain–source voltage .
Under normal operating conditions, the gate is reverse biased
and gate conduction current can be neglected. As a result,
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Fig. 8. Comparison of small-signal S-parameter predictions from the
large-signal MESFET neural-network model (o, +, x, �) with those from the
Khatibzadeh and Trew MESFET model (—).

drain and source conduction currents and are equal.
The neural-network model has four outputs including the
drain current and electrode charges, i.e., . A
three-layer MLP neural-network structure was used. Training
and test data (a total of 1000 samples) were generated from
OSA903 simulations using a semianalytical MESFET model
by Khatibzadeh and Trew [26]. The neural network was trained
using a modified BP algorithm including momentum adaptation
to improve the speed of convergence. The trained neural model
accurately predicted dc/ac characteristics of the MESFET.
A comparison of the MESFET neural model’s -parameter
predictions versus those from the Khatibzadeh and Trew
MESFET model is shown in Fig. 8. Since the neural model
directly describes terminal currents and charges as nonlinear
functions of device parameters, it can be conveniently used for
harmonic-balance simulations.

In the second example, neural-network models representing
dc characteristics of a MOSFET were developed based on
physics-based data obtained by using a recent automatic model
generation algorithm [27]. The neural-network model has two
inputs, i.e., drain voltage and gate voltage . Drain
current is the neural model output parameter. Training
and test data were generated using a physics-based MINIMOS
simulator.4 The average test errors of the trained MOSFET
neural models were observed to be as low as 0.50%. This
fast neural model of the MOSFET can, therefore, be used to
predict the dc characteristics of the device with physics-based
simulation accuracies.

V. CIRCUIT OPTIMIZATION USING NEURAL-NETWORK MODELS

ANN models for RF/microwave components can be used
in circuit design and optimization. To achieve this, the neural
models are first incorporated into circuit simulators. For
designers who run the circuit simulator, the neural models
can be used in a similar way as other models available in the
simulator’s library. An ANN model can be connected with

3OSA90, ver. 3.0, Optimization Syst. Associates, Dundas, ON, Canada (now
Agilent EEsof, Santa Rosa, CA).

4MINIMOS, ver. 6.1, Inst. Microelectron., Tech. Univ. Vienna, Vienna, Aus-
tria.

other ANN models or with any other models in the simulator
to form a high-level circuit. In this section, circuit optimiza-
tion examples utilizing fast and accurate neural models are
presented.

A. CPW Folded Double-Stub Filter

In this example, a CPW folded double-stub filter shown in
Fig. 7 was designed. For this design, the substrate parameters
( , m, ) and the CPW
parameters ( m, m) were fixed, yielding

. Fast neural-network models of CPW components,
namely, the CPW transmission line, 90 compensated bends,
short-circuit stubs, and symmetric T-junctions (the one de-
scribed in Section IV) were trained using accurate training
data from full-wave EM simulations. Design and optimization
of the filter were accomplished using the HP MDS5 network
simulator and the EM-ANN models of various components
[10].

The filter was designed for a center frequency of 26 GHz.
Ideally, the length of each short-circuit stub and the section of
line between the stubs should have a length of at 26 GHz.
However, due to the presence of discontinuities, these lengths
need to be adjusted. Parameters to be optimized are
and . Initial values for these lengths were determined,
and the corresponding structure showed a less than ideal
response when simulated. The circuit was then optimized,
using gradient-descent, to provide the desired circuit response.
The effect of optimization was a reduction in the two line
lengths. A comparison of circuit responses using the initial
EM-ANN design, optimized EM-ANN design, and full-wave
EM simulation of the optimized filter circuit are shown in
Fig. 9. A good agreement was obtained between the EM-ANN
and full-wave EM simulations of the optimized circuit over
a frequency range of 1–50 GHz.

B. Three-Stage Monolithic-Microwave Integrated-Circuit
(MMIC) Amplifier

In this example, MESFET neural models were used for yield
optimization of a three-stage -band MMIC amplifier shown
in Fig. 10. Component ANN models were incorporated into cir-
cuit simulators Agilent ADS6 and OSA90. Numerical results in
this example were from the OSA90 implementation [12]. The
specifications for the amplifier are as follows.

• Passband (8–12 GHz): 12.4 dB gain 15.6 dB, Input
voltage standing-wave ratio (VSWR) 2.8.

• Stopband (less than 6 GHz and greater than 15 GHz): gain
2 dB.

The ANN models of MESFETs (developed in Section IV) were
used in this amplifier design. There are 14 design variables, i.e.,
metal-plate areas of the metal–insulator–metal (MIM) ca-
pacitors , ) and number of turns of the
spiral inductors ( , – ). A total of 37 statistical vari-
ables including gate length, gatewidth, channel thickness, and
doping density of MESFET models, metal-plate area and thick-
ness of capacitor models, and conductor width and spacing of
spiral inductor models were considered.

5MDS, Agilent Technol., Santa Rosa, CA.
6ADS, Agilent Technol., Santa Rosa, CA.
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Fig. 9. Comparison of the CPW folded double-stub filter responses before
and after ANN-based optimization. A good agreement is achieved between
ANN-based simulations and full-wave EM simulations of the optimized circuit.

Fig. 10. A three-stage MMIC amplifier in which the three MESFETs are
represented by neural-network models.

Yield optimization using an -centering algorithm [28] was
performed with a minimax nominal design solution as the ini-
tial point. The initial yield (before optimization) of the am-
plifier using the minimax nominal design was 26% with fast
ANN-based simulations and 32% with relatively slow simula-
tions using the Khatibzadeh and Trew MESFET models. After
yield optimization using neural-network models, the amplifier
yield improved from 32% to 58%, as verified by the Monte
Carlo analysis using the original MESFET models. The Monte
Carlo responses before and after yield optimization are shown in
Fig. 11. The use of neural-network models instead of the Khati-
bzadeh and Trew models reduced the computation time for non-

(a) (b)

(c) (d)

Fig. 11. Monte Carlo responses of the three-stage MMIC amplifier. (a) and
(b) Before yield optimization. (c) and (d) After yield optimization. Yield
optimization was carried out using neural-network models of MESFETs.

linear statistical analysis and yield optimization from days to
hours [12].

Considering that the Khatibzadeh and Trew models used in
this example for illustration purpose are semianalytical in na-
ture, the CPU speed-up offered by neural-based design relative
to circuit design using physics-based semiconductor equations
could be even more significant.

VI. CONCLUSIONS

Neural networks have recently gained attention as a fast,
accurate, and flexible tool to RF/microwave modeling, sim-
ulation, and design. As this emerging technology expands
from university research into practical applications, there is
a need to address the basic conceptual issues in ANN-based
CAD. Through this tutorial, we have tried to build a technical
bridge between microwave design concepts and neural-net-
work fundamentals. Principal ideas in neural-network-based
techniques have been explained to design-oriented readers in
a simple manner. Neural-network model development from
beginning to end has been described with all the important
steps involved. To demonstrate the application issues, a set
of selected component modeling and circuit optimization
examples have been presented. The ANN techniques are
also explained through a multimedia presentation including
narrative audio clips (Appendix I) in the electronic version
of this paper on the CD-ROM accompanying this issue. For
those readers interested in benefiting from neural networks
right away, we have provided a hyperlink to NeuroModeler
demonstration software (Appendix II).

APPENDIX I
MULTIMEDIA SLIDE PRESENTATION

A multimedia Microsoft PowerPoint slide presentation in-
cluding narrative audio clips is made available to the readers
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in the form of an Appendix. The presentation consisting of 55
slides provides systematic highlights of the microwave-ANN
methodology and its practical applications. Some of the ad-
vanced concepts are simplified using slide-by-slide illustrations
and animated transitions. The audio clips further help to make
self-learning of this emerging area easier.

APPENDIX II
HYPERLINK TO NeuroModeler SOFTWARE

A hyperlink to the demonstration version of NeuroModeler
software is provided. The software can be used to practice var-
ious interesting concepts in the tutorial including neural-net-
work structure creation, neural-network training, neural model
testing, etc. The main purpose is to enable the readers to better
understand the neural-network-based design techniques and to
get quick hands-on experience.
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